Symmetric positive solutions of higher-order boundary value problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions of Some Higher Order Nonlocal Boundary Value Problems

We show how a unified method, due to Webb and Infante, of tackling many nonlocal boundary value problems, can be applied to nonlocal versions of some recently studied higher order boundary value problems. In particular, we give some explicit examples and calculate the constants that are required by the theory.

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Positive solutions of $n$th-order $m$-point boundary value problems

‎In this paper‎, ‎by using four functionals fixed point theorem‎, ‎we obtain sufficient conditions for the existence of‎ ‎at least one positive solution of an $n$th-order $m$-point boundary value problem‎. ‎As an application‎, ‎we give an example to demonstrate our main result.

متن کامل

Positive Symmetric Solutions of Singular Semipositone Boundary Value Problems

Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...

متن کامل

Positive Solutions of a Nonlinear Higher Order Boundary-value Problem

The authors consider the higher order boundary-value problem u(t) = q(t)f(u(t)), 0 ≤ t ≤ 1, u(i−1)(0) = u(n−2)(p) = u(n−1)(1) = 0, 1 ≤ i ≤ n− 2, where n ≥ 4 is an integer, and p ∈ (1/2, 1) is a constant. Sufficient conditions for the existence and nonexistence of positive solutions of this problem are obtained. The main results are illustrated with an example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2014

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2014-78