Symmetric positive solutions of higher-order boundary value problems
نویسندگان
چکیده
منابع مشابه
Positive Solutions of Some Higher Order Nonlocal Boundary Value Problems
We show how a unified method, due to Webb and Infante, of tackling many nonlocal boundary value problems, can be applied to nonlocal versions of some recently studied higher order boundary value problems. In particular, we give some explicit examples and calculate the constants that are required by the theory.
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملPositive solutions of $n$th-order $m$-point boundary value problems
In this paper, by using four functionals fixed point theorem, we obtain sufficient conditions for the existence of at least one positive solution of an $n$th-order $m$-point boundary value problem. As an application, we give an example to demonstrate our main result.
متن کاملPositive Symmetric Solutions of Singular Semipositone Boundary Value Problems
Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...
متن کاملPositive Solutions of a Nonlinear Higher Order Boundary-value Problem
The authors consider the higher order boundary-value problem u(t) = q(t)f(u(t)), 0 ≤ t ≤ 1, u(i−1)(0) = u(n−2)(p) = u(n−1)(1) = 0, 1 ≤ i ≤ n− 2, where n ≥ 4 is an integer, and p ∈ (1/2, 1) is a constant. Sufficient conditions for the existence and nonexistence of positive solutions of this problem are obtained. The main results are illustrated with an example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2014
ISSN: 1687-2770
DOI: 10.1186/1687-2770-2014-78